Modern Cryptography

STRONGER SECURITY NOTIONS

Sep 4, 2025

TABLE OF CONTENT

- 1. Stronger Seucrity Notions
- 2. CPA Seucrity
- 3. Pseudo random function

STRONGER SEUCRITY NOTIONS

SECURITY FOR MULTIPLE ENCRYPTION

- Consider a scenario where the same key is used for multiple message exchanges by two communicating parties. An adversary, denoted as \mathcal{A} , eavesdrops on all the messages.

SECURITY FOR MULTIPLE ENCRYPTION

– Consider a scenario where the same key is used for multiple message exchanges by two communicating parties. An adversary, denoted as \mathcal{A} , eavesdrops on all the messages.

$\operatorname{PrivK}^{\operatorname{mult}}_{\mathscr{A},\Pi}(n)$:

- 1. \mathscr{A} is given $\Pi(n)$. \mathscr{A} outputs $\mathbf{m}_0 := (m_{00}, m_{01}, ..., m_{0t})$ and $\mathbf{m}_1 := (m_{10}, m_{11}, ..., m_{1t})$, where $m_{ij} \in \{0, 1\}^*$ with $|m_{0i}| = |m_{1i}| \ \forall i$.
- 2. $k \leftarrow \text{GEN}(n), b \stackrel{\$}{\leftarrow} \{0, 1\} \text{ and } \mathbf{c} := (c_0, c_1, ... c_t) \text{ is given to the } \mathcal{A}, \text{ where } c_i \leftarrow \text{ENC}(k, m_{bi})$
- 3. \mathscr{A} return a bit b'.
- 4. The output of the experiment is $b' \stackrel{?}{=} b$.

*

SECURITY FOR MULTIPLE ENCRYPTION..

Definition 1

A private key encryption scheme $\Pi(n)$ has an indistinguishable multiple encryption in the presence of an eavesdropper, or is EAV-secure, if for all PPT adversaries \mathcal{A} , there is a negligible function $\varepsilon()$ such that, for all n,

$$\Pr\left[\operatorname{PrivK}^{\text{mult}}_{\mathcal{A},\Pi}(n) = 1\right] \le \frac{1}{2} + \varepsilon(n). \tag{1}$$

Remark

• The one-time pad encryption scheme does not have indistinguishable multiple encryptions in the presence of an eavesdropper.

Dr Shashank Singh 5 / 14

CPA SEUCRITY

SECURITY AGAINST CHOSEN-PLAINTEXT ATTACK

Let $\Pi(n)$ be an encryption scheme and \mathscr{A} be a CPA adversary.

$\operatorname{PrivK}_{\mathscr{A},\Pi}^{\operatorname{cpa}}(n)$:

- 1. $k \leftarrow GEN(n)$ and the encryption oracle $ENC_k(\cdot)$ is given to \mathcal{A} .
- 2. \mathscr{A} outputs $m_0, m_1 \in \{0, 1\}^*$ with $|m_0| = |m_1|$.
- 3. $b \stackrel{\$}{\leftarrow} \{0, 1\}$ and $c \leftarrow \text{ENC}(k, m_b)$ is given to \mathscr{A} .
- 4. \mathscr{A} return b'.
- 5. The output of the experiment is $b' \stackrel{?}{=} b$.

*

SECURITY AGAINST CHOSEN-PLAINTEXT ATTACK

Definition 1

A private key encryption scheme $\Pi(n)$ has an indistinguishable encryption under the chosen plain text attack, or is CPA-secure, if for all PPT adversaries \mathscr{A} , there is a negligible function $\varepsilon()$ such that, for all n,

$$\Pr\left[\operatorname{PrivK}_{\mathcal{A},\Pi}^{\operatorname{cpa}}(n) = 1\right] \le \frac{1}{2} + \varepsilon(n). \tag{2}$$

i Note

• We can also define CPA-security for multiple encryptions in a similar manner.

SECURITY AGAINST CHOSEN-PLAINTEXT ATTACK..

Theorem 1

Any private-key encryption scheme that is CPA-secure is also CPA-secure for multiple encryptions.

Remark

- The theorem has positive consequences.
- We only need a CPA-secure fixed-length encryption scheme.
- Since multiple encryption is also CPA secure, we can use the same key to encrypt longer messages as needed.

CONSTRUCTION OF CPA SECURE SCHEMES

- We have observed that CPA security (IND-CPA) remains intact even when the same key is used to encrypt multiple messages.
- The key takeaway from this observation is that we should concentrate on designing a CPA-secure scheme for encrypting fixed-length messages only, i.e., for $\mathcal{M} = \{0, 1\}^n$ for some n.
- The encryption schemes for encrypting fixed-length messages will be referred to as block ciphers. A block cipher is represented by an abstract concept known as a Pseudorandom Function, more precisely by Pseudorandom Permutations.
- When we talk about the pseudorandomness of functions, we are essentially referring to the pseudorandomness of a distribution over functions.

PSEUDORANDOM FUNCTION

- We have observed that <u>large discrete distributions</u> are frequently defined by algorithms that <u>efficiently sample</u> elements according to the distribution.
- We are interested in the random functions of the set \mathcal{F}_n .

$$\mathcal{F}_n = \{f : \{0, 1\}^n \mapsto \{0, 1\}^n\}$$

 $- |\mathcal{F}_n| = 2^{n \cdot 2^n}$ is very large even for very small n.

KEYED FUNCTION

We define a keyed function as a function

$$F_k: \{0, 1\}^{\ell_{\text{in}}(n)} \mapsto \{0, 1\}^{\ell_{\text{out}}(n)},$$

which takes as input a key, $k \leftarrow \{0, 1\}^n$, completely specifies function

$$F_k: \{0, 1\}^{\ell_{\text{in}}(n)} \mapsto \{0, 1\}^{\ell_{\text{out}}(n)} \in \mathscr{F}_n.$$

Remark

- $| \left\{ F_k : F_k \text{ is a keyed function and } k \in \{0, 1\}^n \right\} | = 2^n \ll |\mathcal{F}_n|.$
- ▶ If $\ell_{in}(n) = \ell_{out}(n) = n$, F_k is called length preserving.
- ▶ The size of the keyed function, though very, very small in comparison to $|\mathcal{F}|$ but is still too large (2^n) for us.

PSEUDORANDOM FUNCTION

Definition 1

An efficient, length-preserving keyed function F_k , where $k \in \{0, 1\}^n$ is said to pseudorandom function if for all probabilistic polynomial-time distinguishers (algorithms) \mathcal{D} , there is a negligible function $\varepsilon()$ such that,

$$\left| \operatorname{Pr}_{k} \underset{\sim}{\mathcal{F}} \left[\mathscr{D} \left(F_{k}(\cdot) \right) = 1 \right] - \operatorname{Pr}_{f} \underset{\mathscr{F}}{\mathcal{F}} \left[\mathscr{D} \left(f(\cdot) \right) = 1 \right] \right| \leq \varepsilon(n).$$

Informally, if it's nearly impossible to determine whether a given function (oracle access) is a keyed function or a random function from the set \mathscr{F} with a probability better than $\frac{1}{2} + \varepsilon(n)$, then we can consider the distribution of keyed functions to be pseudorandom.